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In the present paper the acceleration wave theory applicable to the analysis of unsteady waves is 
developed. It is noted that a measurement of either the stress or the velocity history at a material point 
is sufficient to determine the history of the remaining one of these variables and of the strain if the 
instantaneous sound speed is known. This sound speed can be approximated by the speed determined as 
the wave passes through the material between closely spaced gauge stations or may be directly 
calculated from simultaneous measurements of particle velocity and stress at a single station. The 
present theory permits the analysis of wave-profile data obtained using conventional instrumentation 
which has a time resolution of a few nanoseconds. 

I. INTRODUCTION 

When a solid is subjected to the rapid impulsive loading 
accompanying impact or exploSion, waves propagate 
with amplitudes and speeds which are governed by the 
mechanical properties of the sample. After suitable 
analysis, experimental measurements of the speeds and 
amplitudes of these waves are frequently utilized to 
obtain a description of the constitutive relation of the 
shock-loaded sample. In the earliest investigations, ex­
perimental data were obtained only for pressures well 
above 100 kbar and were analyzed with conservation 
relations which assumed that compressive waves prop­
agated as steady shocks. At high pressure this assump­
tion is valid to within the limits of available instrumen­
tation to make time-resolved measurements. More 
recent work in the pressure range of approximately 1-
100 kbar has shown that compression waves may be un­
steady, frequently exhibit appreciable rise times, and 
often possess a very complex structure . 

While the theoretical and experimental bases for high­
pressure shock-wave studies are well established and 
widely employed,I-s analysis of experiments in which 
recorded waveforms exhibit finite rise times is more 
complicated and less certain. In the simplest instance, 
these structured waves consist simply of two or more 
shocks and can be interpreted in terms of the shock 
jump conditions with little difficulty. Observed wave­
forms involving smooth transitions between states have 
been analyzed by approximating the observed stress or 
particle-velocity history as a sequence of shocks so 
that the approximate waveform can be analyzed by 
means of the jump conditions for shocks. 4-6 Even 
though this procedure for treating unsteady waveforms 
seems to provide a suitable data-reduction technique in 
most instances, the extent of the approximations has 

not been defined and no explicit theoretical basis for the 
analysiS has been offered. A well-founded and effective 
scheme for reducing the data obtained in conventional 
shock-compression experiments conducted in the low­
pressure regime is urgently needed. Since there is no 
universally acceptable constitutive equation for describ­
ing the nonequilibrium behavior of most of the various 
classes of materials that propagate waves exhibiting 
appreciable structure, it is desirable that the data­
reduction scheme be one in which information can be 
extracted without the assumption of any such relation. 

A recent examination of this problem by Fowles and 
Williams7 has given rise to a new theory of unsteady 
wave propagation. This theory involves different speeds 
of propagation of stress and particle-velocity waves; 
hence, it will be referred to as the dual-wave theory. 
Unfortunately, attempts to base a data-reduction 
scheme on the dual-wave theory have been frustrated 
by the necessity to employ instrumentation of a type 
that, in its present state of development, does not ex­
hibit sufficiently good time resolution to study many 
materials of interest . 

In this paper an alternative scheme is presented which, 
while not directly meeting the challenge posed by the 
dual-wave theory, has the advantage of providing a 
rational and explicit method for reducing data obtained 
from conventional instrumentation. This method is 
similar to that in which the wave is apprOXimated as a 
sequence of steps (shocks) but employs the higher ap­
proximation in which the experimental record is ap­
proximated as a sequence of chords . The discontinuities 
of slope where the chords join form acceleration waves, 
and the data-reduction method proposed in this paper is 
based on the theory of these waves. Only a single wave 
speed (the acceleration wave speed) appears in the 
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governing equations, which are otherwise similar to 
those of the dual-wave theory. The proposed data­
reduction scheme occupies an intermediate position be­
tween the conventional method of approximating the re­
cord as a sequence of shocks and the dual-wave method 
of Fowles and Williams. It is better founded than the 
former method, and yet still preserves its essential 
advantages of experimental simplicity and ability to cope 
with wave interactions. 

After considering kinematical preliminaries in Sec. 11 
and pertinent results from the theory of singular sur­
faces in Sec. Ill, the properties of acceleration waves 
will be considered in Sec. IV. In Sec. V, the analysis 
will be specialized to the case of one-dimensional mo­
tions, and in the discussion of Sec. VI the acceleration 
wave theory will be compared to other results. In the 
Appendix it is shown that the analysis can be employed 
to solve wave interaction problems. 

11. KINEMATICAL PRELIMINARIES 

Let X=(X1 ,X2 ,X3 ) denote the coordinates of a material 
point at time to, and let x = (Xl, x2 ,x3) denote the coor­
dinates of the same material point at time t~ to' A mo­
tion of a material body is described by the function x 
such that 

x=i(X, t), (2.1) 

with the property ~(X, to) =X. The physical interpreta­
tion of the function i is that it gives the coordinates x of 
a material point at each time t> to, whose position at 
t=to is given by the coordinates X. In the treatment of 
physical problems, the usage of either (X, t) or (x, t) as 
independent variables is equivalent. (X, t) is referred to 
as the material description while (x, t) is referred to as 
the spatial description. In this paper we employ the ma­
terial description, because we have in mind application 
to problems of solid mechanics in which the instrumen­
tation is affixed to a specific particle and records the 
history of events taking place at this particle. 

The components ick of the velocity x of a particle and the 
components XI' of the acceleration it of a particle are 
given by 

ick- aX'(X,t) 
- at ' 

(2 . 2) 

At each t> to, the components ~K' ~KL of the deforma­
tion gradient and its derivative, respectively, are given 
by 

aX"(x, t) 
and ~KL = axK axL 

Ill. RESULTS FROM THE THEORY OF 
SINGULAR SURFACES 

(2.3) 

The theory of singular surfaces and the conditions that 
must be satisfied across a singular surface for geomet­
rical and for kinematical reasons have been presented, 
for instance, by Truesdell and Toupin. B Here only the 
main features of singular surface analysis will be re­
viewed and applied to the problem at hand. 

Consider a material region R and a surface S that di­
vides the region into R+ and R-. The unit normal N to 
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the surface S is directed toward R+. Let >It(., t) be a 
function which is continuous within the regions R+ and 
R- at each t> to and for which the limits >It+ and >It- exist 
as X approaches a point Xo on S along paths wholly with­
in R+ and R-. We say that the surface S is singular with 
respect to >It (X, t) if 

[>It 1 = >It + - >It- *0 . 

If the surface S is a moving surface, i. e., a wave, then 
it is necessary to discuss the manner in which it may 
move. Basically, there are three ways of describing 
speeds by which this can be accomplished. (i) un -the 
speed of displacement. It is a measure of the speed with 
which the surface moves with respect to the origin of 
our fixed rectangular Cartesian system. (ii) UN -the 
speed of propagation. It is a measure of the speed with 
which the surface traverses the material. (iii) U -the 
local speed of propagation. It is a measure of the speed 
with which the surface moves with respect to the parti­
cles instantaneously on the surface, i. e., U=un -xn' 
xn is the normal component of the velocity of the parti­
cles instantaneously on the surface with respect to the 
spatial direction n in which the surface is moving. 

In the present discussion, the following definitions are 
needed: 

(0 A wave is said to be a shock wave if the conditions 

[xk] =0, [ick]*O, and [x!'K]*O 

are satisfied. 

(ii) A wave is said to be an acceleration wave if 

[xkl =[ickl =[~Kl =0, [XI'] *0, 
[~Kl *0, and [X~KM] *0. 

Higher-order waves can be defined in an analogous 
manner. 

(3.1) 

(3.2) 

A singular surface is called a contact surface if [x] =0 
and U = 0. A contact surface has no motion with respect 
to the material but may, of course, be convected along 
with the material. 

The requirements of conservation of mass and conser­
vation of linear momentum across a Singular surface 
are of the form 

[pU]=o, (3 . 3) 

and 

(3.4) 

where [km is called the Cauchy stress or the true stress, 
and p is the present density . 

It should be pointed out that relations (3.3) and (3.4) are 
arri ved at independent of the nature of the surface. 
These are the relations which must be satisfied for 
every wave or contact surface if mass and linear mo­
mentum are to be conserved across the surface. For 
the case of shock waves when values of U and [ick] are 
known, these relations are used to determine the value 
of the density and the value of the stress components 
behind the shocks. Furthermore, these relations are 
arrived at independent of the material in question, i. e. , 
independent of the constitutive relations. 


